Showing posts with label smart. Show all posts
Showing posts with label smart. Show all posts

Friday, October 24, 2014

Smart Chocolate Block Schematic Diagram

What can be done, when two light bulbs in one light fitting are to be switched separately, but only one switch circuit is available? Simple: build a ‘smart chocolate block’ into the ceiling rose! The circuit is built from discrete components and with a bit of ingenuity can be fitted onto a printed circuit board measuring just a centimetre or two square.

When light switch S1 is operated for the first time lamp La1, which is connected in the usual way, lights; La2 remains dark. Electrolytic capacitor C1 starts to charge via rectifier diode D1 and resistors R1 and R2 until zener diode D3 conducts, limiting the voltage to about 6.8 V. This voltage is used as a supply for the rest of the circuit. The second lamp is connected via a triac and a fuse (1.5 A, medium speed recommended). The triac is triggered by T4, which can only happen when T3 does not pull its base down to ground. The first time the circuit is switched on this is the case, as we shall see below.
Smart Chocolate Block Schematic
Smart Chocolate Block Circuit Schematic Diagram
Transistors T1 and T2 form a bistable flip-flop with a well-defined power-up state. R14 and R15 cause both transistors to be initially turned off. As the voltage across C1 rises, transistor T1, driven via resistors R7 and R9, turns on. The base drive for transistor T2, which is provided via D2, the low-pass filter formed by R6 and C2, and R5, would arrive a little later, but when T1 turns on it diverts the base current away from T2, which therefore remains turned off. This situation is stable: the base of T3 is not pulled down and so this transistor conducts.

To turn the second lamp on, switch S1 is opened and then, within a second or so, closed again. The effect of this action on the flip-flop is as follows.

When the switch is opened the voltage across C1 falls more rapidly than the volt-age across C2. The main reason for this is resistor R3, which is directly responsible for the discharge of C1; C2 can only discharge through the relatively high resistance of R5, since the other path is blocked by diode D2. This means that T2 is driven via R5 for one or two seconds longer than T1 is driven via R7 and R9. If during this time the supply voltage reappears, it can no longer drive the base of T1 via R7 as T2 is conducting all the current to ground. This situation is also stable, as C2 is recharged via D2 and R6.

When T2 conducts it pulls the base of T3 to ground, so that this latter transistor turns off. Darlington transistor T4 now conducts as its base is pulled high via R4. T4 now provides the trigger current for the triac via current limiting resistor R10, and the second lamp lights.

T5 and T6 together form a zero-crossing detector. It ensures that the triac is never triggered at a moment when the AC mains supply is at a high voltage point in its cycle. This avoids a rapid inrush current into La2, which would give rise to considerable radio interference. Also, trigger current is only required for the triac for a small fraction of the period of one cycle of the mains supply. If this current were drawn continuously from the low voltage supply, C1 would rap-idly discharge; R1 and R2 would have to be considerably reduced in resistance, which would increase the heat dissipation of the module, perhaps making it infeasible to build the circuit into a plastic ceiling rose.

Using the component values shown the triac is only driven when the instantaneous mains voltage is less than about 15 V in magnitude. The voltage divider formed by R11, R12 and R13 switches on the transistors T5 and T6 when the voltage is greater than +15V or less than –15 V respectively. The collectors of these transistors, which are connected together, pull the base of T4 down to ground or to a slightly negative voltage when the mains cycle is outside the desired phase window.

Any resistors across which mains voltages will be dropped are formed from two individual resistors wired in series to ensure that the maximum voltage specifications of ordinary 0.25 W components are not exceeded. This applies to R1 and R2, as well as R11 and R12. The whole circuit is at mains potentials and great care must be taken to observe all relevant safety precautions in construction and installation. link
Read More..

Sunday, September 7, 2014

Smart Trailing Socket Wiring diagram Schematic

Mains sockets switched automatically by a Control Socket, Up to 1000W switched power. This schema consists of a Trailing Socket (also called Extension or Distribution Socket) or similar device where two, three or more sockets (depending on the box dimensions and on constructors needs) will be powered only when a current flows in the Control Socket. For example: if an electric drill is connected to the Control Socket, the Switched Sockets will be powered each time the electric drill is running. In this case, a lamp could be connected to a Switched Socket and will illuminate when the drill is operating. Another example: a desk lamp could be connected to the Control Socket and a PC, a Monitor and a Printer could be connected to the Switched Sockets and will be running after the lamp is switched on. Switching off the lamp, all the above mentioned appliances will be automatically switched off. A further application is the control of a High Fidelity chain, plugging the Power Amplifier in the Control Socket and - for example - CD Player, Tape Recorder, and Tuner in the Switched Sockets.

Usually, trailing sockets are placed to the rear of the appliances, often in places not easily reachable, so, even if the socket has a switch, it is much easier to switch on and off the High Fidelity chain from the main amplifier itself. The same consideration is valid for computer-monitor-printer chains etc. Nevertheless, in this case, the use of a table lamp plugged in the Control Socket is almost mandatory, as explained below. In fact, this very sensitive schema works fine when appliances having full breaking switches like lamps, drills, most power amplifiers, old radios, old TV sets, fans, almost all electrical household appliances etc. are plugged in the Control Socket. This is because these devices have a switch that fully excludes the internal schemary from the mains. Unfortunately, in modern devices like computers, monitors, CD players, recent radios and TV sets (usually powered by means of internal "switching" supplies), the power switch does not completely isolate the internal schemary from the mains, as transient suppressors and other components remain on schema. This causes a very small current to flow across the sensing schemary, but sufficient to trigger the output Triac.

Therefore, the switched devices will remain always on, no matter if the control appliance is on or off. This could also happen when devices connected to the mains by means of plug-in power supply adapters are used as control appliances, due to their lack of a mains switch. In spite of this restriction, the schema can be still useful, due to the high number and variety of devices allowing impeccable performance when they are plugged in the Control Socket.

Smart Trailing Socket Circuit Diagram

Smart
Smart Trailing Socket Circuit Diagram


Parts:
R1,R2_________100R 1/2W Resistors
C1____________100nF 630V Polyester Capacitor
D1 to D6_____1N5408 1000V 3A Diodes (See Notes)
D7__________TIC225M 600V 8A Sensitive Gate Triac (See Notes)
A commercial trailing socket to be modified or a self-made box with several sockets.

Circuit operation:
Six back-to-back power diodes are connected in series to the Control Socket. The current drawn by the device plugged into this socket when in the on state, flowing through the diode chain, causes a voltage drop of about 2V. This voltage, limited by R1, drives the Gate of the Triac D7 which, in turn, will switch the output sockets. C1 and R2 form a so called "Snubber network", helping to eliminate switching transients generated by inductive loads.

Notes:
  • The schema is sufficiently small to be embedded into some types of commercial trailing sockets, or a box with a number of sockets can be made at will.
  • The diode types suggested in the Parts List for D1 to D6 will allow an appliance of up to about 500W power to be plugged in the Control Socket. Use BY550-800 diodes for up to 800 - 1000W.
  • For less demanding appliances, 1N4007 diodes will allow up to 200W power.
  • The Triac type suggested in the Parts List for D7 will allow a total power available to the Switched Sockets of more than 1000W. If you intend to drive loads of more than 500W total, please use a suitable heatsink.
  • Wanting to drive less powerful loads, you can use for D7 a TIC216M (up to 800 - 1000W) or a TIC206M (up to 500 - 600W).
  • Warning! The device is connected to 230Vac mains, so some parts in the schema board are subjected to lethal potential! Avoid touching the schema when the mains cord is plugged in!


Source by : Streampowers
Read More..