Showing posts with label versatile. Show all posts
Showing posts with label versatile. Show all posts

Monday, November 3, 2014

Versatile Micropower Battery Protector

Protect your expensive batteries from discharge damage with this mini-sized electronic cutout switch. It uses virtually no power and can be built to suit a wide range of battery voltages.
Main Features
  • Disconnects load at preset battery voltage
  • Automatically reconnects load when battery recharged
  • Ultra-low power consumption (<20ma)
  • Miniature size
  • 10A maximum rating
  • Suitable for use with 4.8-12.5V batteries
  • Transient voltage protection (optional)
Suitable for use in...
  • Cars, boats & caravans
  • Security systems
  • Emergency lighting
  • Small solar installations
  • Camera battery packs
  • Many other low-power applications
Picture of the project:

versatile-micropower-battery-protector-circuit1
versatile-micropower-battery-protector-circuit-backside

Back in May 2002, we (Silicon Chip) presented the "Battery Guardian", a project designed specifically for protecting 12V car batteries from over-discharge. This unit has proven to be very popular and is still available from kit suppliers. This new design does not supersede the Battery Guardian – at least not when it comes to 12V car batteries. Instead, it’s a more flexible alternative that can be used with a wide range of battery voltages.
Parts layout:

front-parts-layout-versatile-micropower-battery-protector-circuit
back-parts-layout-versatile-micropower-battery-protector-circuit

In this new "Micropower Battery Protector", we’ve dispensed with the low-battery warning circuitry and the relatively cheap N-channel MOSFET used in the Battery Guardian in favour of a physically smaller module that steals much less battery power. It costs a little more but can switch lower voltages, allowing it to be used with 6V & 12V lead-acid batteries and 4-cell to 10-cell NiCd and NiMH battery packs.
PCB layout:
pcb-layout-versatile-micropower-battery-protector-circuit

Most battery-powered equipment provides no mechanism for disconnecting the batteries when they’re exhausted. Even when the voltage drops too low for normal operation, battery drain usually continues until all available energy is expended. This is particularly true of equipment designed to be powered from alkaline or carbon cells but retro-fitted with rechargeables.

Circuit diagram:

versatile-micropower-battery-protector-circuit-diagram

Another example is emergency lighting and security equipment designed to be float-charged from the mains. In an extended blackout period, the batteries can be completely drained and may not recover when the mains power is finally restored.



Read More..

Friday, September 19, 2014

Versatile Micropower Battery Protector

Protect your expensive batteries from discharge damage with this mini-sized electronic cutout switch. It uses virtually no power and can be built to suit a wide range of battery voltages.
Main Features
  • Disconnects load at preset battery voltage
  • Automatically reconnects load when battery recharged
  • Ultra-low power consumption (<20ma)
  • Miniature size
  • 10A maximum rating
  • Suitable for use with 4.8-12.5V batteries
  • Transient voltage protection (optional)
Suitable for use in...
  • Cars, boats & caravans
  • Security systems
  • Emergency lighting
  • Small solar installations
  • Camera battery packs
  • Many other low-power applications
Picture of the project:
versatile-micropower-battery-protector-circuit1
versatile-micropower-battery-protector-circuit-backside 2

Back in May 2002, we (Silicon Chip) presented the "Battery Guardian", a project designed specifically for protecting 12V car batteries from over-discharge. This unit has proven to be very popular and is still available from kit suppliers. This new design does not supersede the Battery Guardian – at least not when it comes to 12V car batteries. Instead, it’s a more flexible alternative that can be used with a wide range of battery voltages.

Parts layout:
front-parts-layout-versatile-micropower-battery-protector-circuit 3
back-parts-layout-versatile-micropower-battery-protector-circuit 4

In this new "Micropower Battery Protector", we’ve dispensed with the low-battery warning circuitry and the relatively cheap N-channel MOSFET used in the Battery Guardian in favour of a physically smaller module that steals much less battery power. It costs a little more but can switch lower voltages, allowing it to be used with 6V & 12V lead-acid batteries and 4-cell to 10-cell NiCd and NiMH battery packs.

PCB layout:
pcb-layout-versatile-micropower-battery-protector-circuit 5

Most battery-powered equipment provides no mechanism for disconnecting the batteries when they’re exhausted. Even when the voltage drops too low for normal operation, battery drain usually continues until all available energy is expended. This is particularly true of equipment designed to be powered from alkaline or carbon cells but retro-fitted with rechargeables.

Circuit diagram:
versatile-micropower-battery-protector-circuit-diagram 6

Another example is emergency lighting and security equipment designed to be float-charged from the mains. In an extended blackout period, the batteries can be completely drained and may not recover when the mains power is finally restored.
Source: Silicon Chip 27 July 2004
Read More..

Saturday, September 6, 2014

Versatile DC DC Converter Wiring diagram Schematic

Here is a versatile power coupler that connects a device to 5V-19V DC generated from AC mains by a power adaptor. Power adaptors come in different voltage outputs like 5V (for mobile phones), 12V (for external hard drives) and 19V (for laptops). Sometimes the power adaptor may have a voltage rating higher than the required voltage. With the converter schema given here, the adaptor can be used to power any device at a lower voltage. 

For instance, by using a 19V laptop adaptor, you can power a TTL schema at 5V. There can also be other instances when one needs a 3V or 6V supply. All these and many other intermediate voltages are easily possible with this versatile converter schema when used together with any off-hand power adaptor.

Circuit diagram :

Versatile
Versatile DC-DC Converter Circuit diagram

Fig. 1 shows the schema of the DC-DC converter. Smooth reduction in the voltage is achieved using the LM317 regulator IC. The complete unit can fit inside a piece of a glue stick tube.
Adjusting variable resistor VR1 gives the desired output voltage. The output voltage is read using a 0-100µA ammeter, whose series resistance R* is chosen such that the maximum desired voltage could be covered. For instance, if full-scale deflection (FSD) current of the meter is 100 µA and you need an output voltage of up to 15V, then R* = 15/0.0001 = 150 kΩ. The desired value of R* is obtained by using 150-kilo-ohm preset VR2. 

Use of a variable resistor which also has an on/off switch like the one in old radios is recommended. It will cut off the coupler from the input power supply without having to accomodate an additional switch. Also, use a heat-sink with LM317 to handle the desired amount of power.

Proposed-assembly

Assemble the schema on a small general-purpose PCB and enclose in a suitable case. Fit the entire PCB inside a glue stick tube as shown in Fig. 2. Affix the female and male connectors on the opposite ends and place the ammeter in between the stick tube. You can directly read the output voltage on the ammeter after due calibration.

Note. You can use a suitable VU meter instead of 0-100µA ammeter and calibrate accordingly.
Source By Streampowers
Read More..